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ABSTRACT 
The aim of the present study is to examine a mathematical model (based on non Newtonian flow) of two phase 

blood flow in artery presence of breathing problem affected by Lung cancer. We have applied power law 

model in bio fluid mechanical setup. We have presented the relationship between hemoglobin and blood 

pressure drop. In the present study overall presentation is in Tensor form and the solution technique used is 

both analytical and numerical.  Which, given the medical point of view, will be beneficial and useful in the 

field of medicine. 

 

Keywords : Hemoglobin, Blood pressure drop, Hematocrit 

 

1 INTRODUCTION 

The most important part of the circulation in human body is that is a continuous circuit.  If a given volume of 

blood is pumped from the heart, the same will be return heart after passing through the different sub-system 

of the circulatory system[3,5].  Shortness of breath can be caused by cancer and its treatment, according to the 

American Cancer Society. Dyspnea is the medical term for this. When people have problems breathing, it's 

possible that their bodies aren't getting enough oxygen because their lungs can't take in enough air or their 

bloodstream can't carry enough oxygen[16]. The human lungs performed just like purification station of blood 
[11]. The function of the arteries is to carry blood to the tissues under high pressure. The arteries have thick 

vascular walls and blood flows through the arteries at high speed. The arterioles are the last small branches 

of the arterial system; the act as control lines through which blood is released in to the capillaries.  

Since the pressure in the venous system is very low, the walls of the veins are thin. Even so, they are muscular 

enough to contract of expand and thus as a controllable reservoir for extra blood, either in small or large 

amounts, depending on the needs of the circulatory system [1]. Blood is an unpredictable liquid as non-

Newtonian. Its stream laws don't comply with the laws of basic liquids depicted by the Navier-Stokes 

conditions [5]. The amount of blood in the human body is significant, making up around 7% of the aggregate 

body weight. Blood functions in the transport of oxygen, nourishment, hormones (food hormones) and waste 

material in the guideline of temperature and in control of disease.  

Blood and its subordinate lymph form a sort of inward sea that ceaselessly bathes our cells. Blood is a fluid 

tissue. It streams promptly in light of the fact that its constituent cells are not consolidated in an inflexible or 

semi – unbending system, however are suspended in watery medium. The cell floats independently and is 
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conveyed along like flotsam or jetsam in spilling current. As blood courses through the vessels of the 

circulatory system, it comprises of a complex, straw shaded liquid plasma in which float that suspended RBC, 

WBC and platelets. The liquid plasma makes around 55% out of the aggregate volume and cells make up the 

staying 45% of the aggregate volume [3,6]. 

1.2 HEMATOCRITAND ITS RELATION: 

According to Upadhyay & Kumar blood is not an ideal liquid, but a mixture of plasma and blood cells. These 

blood cells, packets of semi-permeable fluid with a density greater than that of plasma, can change in shape 

and size, and the behavior of blood is almost Newtonian at high shear rates, while at low shear rate of blood 

exhibits yield stress and non-Newtonian behavior. Blood flow is affected by the presence of blood cells and 

this effect is directly proportional to the volume absorbed by the blood cells [10,7,9]. 

1.3 MATHEMATICAL FORMULATION: 

Whenever the hematocrit increases, the effective viscosity of the blood flowing in the arteries remote from 

the heart depends on the rate of stress. In this condition, the blood flow becomes non-Newtonian. In this 

situation the constitutive equation for blood is 

                                 τij = −pgij + η
m
(eij)n = −pgij + τ′ij                   (1.2.1) 

Where, 𝜏𝑖𝑗 is stress tensor and 𝜏 ′𝑖𝑗 is shearing stress tensor. 

The equation of continuity in tensorial form for power law will be as follows:  

                                                   
1

√g
(√g𝑣i),i = 0                                    (1.2.2) 

Again, write down the equation of motion as follows 

                                  ρ
m

(
∂𝑣i

∂t
) + (ρ

m
𝑣j)𝑣,j

i = τ,j
ij
                                   (1.2.3) 

Where τij is equation of power law flow (1.2.1). ρ
m

= Xρ
c
+ (1 − X)ρ

p
, is the density of blood and η

m
=

Xη
c
+ (1 − X)η

p
 is the viscosity of mixture of blood, =

𝐻

100
 , (where X is volume ratio of blood cells). Other 

symbols have their usual meanings. Since the blood vessels are cylindrical, the above major equations have 

to transform the equations in cylindrical form. As we know for cylindrical co-ordinates,   

𝑋1 = 𝑟,  𝑋2 = 𝜃, 𝑋1 = 𝑟, 𝑋3 = 𝑧 
As we know earlier:  

Matrix of metric tensor in cylindrical coordinates is fallows:  

[𝑔𝑖𝑗] = [
1 0 0
0 𝑟2 0
0 0 1

] 

While matrix of conjugate metric tensor is follows:  

[𝑔𝑖𝑗] = [

1 0 0

0 1
𝑟2⁄ 0

0 0 1

] 

Whereas the Chritoffel’s symbol of 2nd kind is as follow- 

{
1

2 2
} =   −r ,{

1
2 2

}  =   {
1

2 2
}  =  

1

r
, Remaining others are zero.  

The relation between covariant components and physical component of the velocity of the blood flow are as 

follows will be as: 

          √g11𝑣
1 = 𝑣r ⟹ 𝑣r = 𝑣,√g22𝑣

2 = 𝑣θ ⟹ 𝑣θ = r𝑣2 , √g33𝑣
1 = 𝑣z ⟹ 𝑣z = 𝑣3 

Again the physical components of −p,jg
ij is − √giip,jg

ij 

The matrix of physical components of sharing stress tensor  𝜏′𝑖𝑗 = 𝜂𝑚(𝑒𝑖𝑗)𝑛 = 𝜂𝑚(𝑔𝑖𝑘𝑣,𝑘
𝑖 + 𝑣,𝑘

𝑗)𝑛 will be 

as follows  

[
 
 
 0 0 𝜂𝑚(𝑑𝑣

𝑑𝑟⁄ )
𝑛

0 0 0

𝜂𝑚(𝑑𝑣
𝑑𝑟⁄ )

𝑛

0 0 ]
 
 
 

 

The covariant derivative of 𝜏′𝑖𝑗 is  
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𝜏′,𝑗
𝑖𝑗

=
1

√𝑔

𝑔

𝜕𝑋𝑖
(√𝑔𝜏 ′

𝑖𝑗
) + {

𝑖
𝑗     𝑘

} 𝜏 ′
𝑖𝑘

 

Keeping in view the facts, the governing tensorial equations can be transformed into cylindrical form which 

is as follows:  

Equation of continuity 

                                           
𝜕𝑣

𝜕𝑧
= 0                                                        (1.2.4) 

Equation of motion 

Components of equations of motion 

r- Component 

                                   −
𝜕𝑃

𝜕𝑟
= 0                                                             (1.2.5) 

𝛉 – Component 

                                   0 = 0                                                                  (1.2.6) 

Z – Component- 

                                  0 = −
𝜕𝑃

𝜕𝑧
+

𝜂𝑚

𝑟

𝜕

𝜕𝑟
[𝑟 {

𝜕𝑣𝑧

𝜕𝑟
}
𝑛

]                                (1.2.7) 

Here this reality has been taken in see that the blood stream (flow) is pivotally (axially) symmetric in supply 

routes concerned[4]. 

i.e.    𝑣𝜃 = 0     And        𝑣𝑟 = 0,                  

𝑣𝑧 and p do not depend upon 𝜃. Also the blood flow steadily, i.e. 

                          (
∂p

∂t
) = (

∂𝑣r

∂t
) = (

∂𝑣θ

∂t
) = (

∂𝑣z

∂t
) = 0                              (1.2.8) 

1.4  SOLUTION  

The blood glide in arteries is symmetric w.r.t. axis. As a result 𝑣θ =  0  (𝑣𝑟 , 𝑣𝑧  and p do now not really on  θ 

also). When you consider that best one component of the rate that's effective, 𝑣𝑟  =  0, 𝑣𝜃  =  0 and 𝑣𝑟  =  𝑣 

say, the glide is regular, we have  

                                         (
∂p

∂t
) = (

∂𝑣𝑟

∂t
) = (

∂𝑣𝜃

∂t
) = (

∂𝑣z

∂t
) = 0  

Now we keeping in view these facts and we obtain the following consequence 

Then equation of continuity reduces to  

                                           (  
∂𝑣𝑧

∂z
 ) = 0 ⟹ 𝑣𝑧 = 𝑣(r)                              (1.3.1) 

The 𝑟𝑡ℎ component of equation of motion reduces to  

                   ρ
m

(0) = −(
∂p

∂r
) + η

m
(0) ⟹ (

∂p

∂r
) = 0 ⟹ p = p(z)         (1.3.2) 

Again  θ – Component of equation of motion reduce to  

                                 ρ
m
(0) = −(0) + η

m
(0) ⟹ 0 = 0                         (1.3.3) 

Also, the 𝑧𝑡ℎ   component of equation of motion reduces to  

                          ρ
m
vz (

∂𝑣z

∂t
) = −(

∂p

∂z
) + η

m
[
1

r

∂

∂r
{r

∂(𝑣z )

∂r
} + (

∂2𝑣z

∂z2 )]       (1.3.4) 

From equation (1.3.1) and (1.3.4) we get-  

                                         0 = −(
∂p

∂z
) + η

m
[
1

r

∂

∂r
{r

∂𝑣(r)

∂r
}]                       (1.3.5) 

Where, the equation (1.3.2) expresses the actuality that the pressure p depends only on z. We additionally 

written the details that pressure gradient – (
∂p

∂z
) within the artery far off from heart is constant, say p then the 

equation (4.5) and we take the equations following shape-                                                     

                                 0 = P + η
m

[
1

r

∂

∂r
{r

∂𝑣(r)

∂r
}]                              (1.3.6) 

Now, integrating the equation (1.3.6), we get,  

                                                     r (
d𝑣

dr
) = −(

Pr2

2ηm

) + A                           (1.3.7) 

Where, A is the constant and we have applied the first boundary condition (4.7) and we have get-                    

                                                                               𝐴 =  0 
Hence equation (1.3.7) reduces to  

                                                            r (
d𝑣

dr
) = −(

Pr2

2ηm

)                            (1.3.8) 

Integrating the equation (1.3.8), we get- 

                                                                   𝑣 = −
Pr2

4ηm

+ B                         (1.3.9) 
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Again using 2nd boundary condition on the equation (4.9) and we can evaluate the integration constant as 

follows- 

B =
PR2

4η
m

 

Putting the value of B in the equation (1.3.9) and we obtain the velocity of blood flow in the arteries remote 

from the heart as follows- 

                                             v =
P

4ηm

(R2 − r2) (1.3.10) 

1.5 Mathematical Analysis for Pulmonary Arteries 

Now we have integrated equation (1.2.3), 𝑣𝑧 = 𝑣(𝑟) {v does not depend upon  𝜃} and the integrating of 

equation of motion (1.2.5) yields: 

Where, 𝑃 =  𝑃 (𝑧) {p does not depend upon 𝜃}. 

Now, from equation (1.2.7) and (1.2.8) the equations of motion (1.2.6) change in to the subsequent shape- 

                                             0 = −(
dp

dz
) + (

ηm

r
)

d

dr
{r (

d𝑣

dr
)
n

}   (1.4.1) 

We know that the pressure gradient −
∂p

∂z
= P  of blood flow in the arteries remote the heart may be 

hypothetical to be steady and for this equation (3.8) the following form-      

                                                           
d

dr
{r (

d𝑣

dr
)
n

} = −(
Pr

ηm

)                    (1.4.2) 

Again equation (1.2.8), we obtain  

                                                           r (
d𝑣

dr
)
n

=
Pr

2ηm

+ A                         (1.4.3) 

The rate of the blood go with the flow at the axis of cylindrical arteries is most and constant. So that we've 

concern the boundary conditions at r = 0, 𝑣 = 𝑣0 (constant), on equation (1.4.2) takes the subsequent shape- 

                                 r (
d𝑣

dr
)
n

=
Pr

2ηm

⟹ −
d𝑣

dr
= [

Pr

2ηm

]

1

n
                   (1.4.4) 

Again integrating equation (1.4.4), we get-  

                                                      𝑣 = − [
P

2ηm

]

1

n
  

𝑟
1
𝑛

+1

1

𝑛
+1

+ B                       (1.4.5) 

To finish the arbitrary steady B, we are able to be applying the non-slip condition on the inner wall of the 

arteries at  𝑟 =  𝑅, 𝑣 =  0, 

            where R = radius of blood vessels, on equation (1.4.5) so as to get 

                                                        B = [
P

2ηm

]

1

n
  

n𝑅
1
𝑛

+1

n+1
  

Hence the equation (1.4.5), we take the following form-  

                                                        V = [
P

2ηm

]

1

n
  

  n 

n+1
[R

1

n
+1 − r

1

n
+1]         (1.4.6) 

Which conclude that the velocity of the blood flow in the artery remote from heart. Now, we know that,  Q =
0.00708333 𝑚3/sec[15,8], η

p
= 0.0013    pascal second[12] and              η

m
=  0.0271  pascal second[13]. 

Approximately pulmonary artery length is (𝑧𝑓 − 𝑧𝑖) =  5 𝑐𝑚  or 0.05 m., pulmonary arterioles and venules 

length = 0.0015 m.[14].  

1.5 Bio-physical interpretation for artery blood vessel 

The flow flax of blood through the arteries is- 

  Q = ∫ V. 2πrdr = ∫ [
P

2ηm

]

1

n
 

n

n+1
(R

1

n
+1 − r

1

n
+1)

R

0

R

0
   

                       Q = [
P

2ηm

]

1

n
 
n2π

n+1
[
R

1
n
+1

 .r2

2
−

nr
1
n
+3

3n+1
]
0 

R

       

                       Q = [
P

2ηm

]

1

n
 
n2π

n+1
(

(n+1).R
1
n
+3

2(3n+1)
 )   
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                       Q = [
P

2ηm

]

1

n
 
nπR

1
n
+3

3n+1
                                                           (1.5.1)  

 

Table 1 : Clinical Data– Data between real clinically blood pressure drop 

Date 
Hemoglobin 

(gram/dl) 

Hematocrit 

(3 × 𝐻𝐵) 

(kg/l) 

Blood 

Pressure 

(mmhg) 

BPD in Pascal Second 

(
𝑆 + 𝐷

2
) − 𝑆 

(BPD*132.133) 

21/05/2016 12.0 0.033963 110/60 -3328.3 

09/07/2016 11.8 0.033397 110/80 -1996.98 

12/10/2016 11.9 0.0336793 110/60 -3328.3 

24/12/2016 11.7 0.0331133 100/80 -1331.32 

26/03/2017 11.2 0.03169812 100/60 -2662.64 

12/05/2017 10.0 0.02830189 130/80 -3328.3 

17/08/2017 10.2 0.02886793 110/70 -2662.64 

 

In according to used clinical data (Table: I) (Hematocrit)  H =   0.0331133   and Pressure drop  (𝑃𝑓 − 𝑃𝑖) =

 1331.32 𝑃𝑎𝑠𝑐𝑎𝑙 𝑠𝑒𝑐𝑜𝑛𝑑. 

𝑃(𝑧) =
𝑃𝑓 − 𝑃𝑖

𝑧𝑓 − 𝑧𝑖
 

And by using relation                         η
m

= η
c
 X + η

p
 (1 − X)        …….. (W) 

We get   η
c
                                                                                                                       

                                    ⇒ 0.0271 = η
c
(0.000331133) + 0.0013(0.999668867) 

                                     η
c
=  77.91561238  Pascal second 

Again using (W) relation and change in to the hematocrit- 

                                ⇒ η
m

=  0.779156124H + 0.00129957  

From equation (1.5.1) 

                                                                          𝑃 = −
𝑑𝑝

𝑑𝑧
  

We get  

                                                         Q = [
∆P

2ηm∆z
]

1

n
 
nπR

1
n
+3

3n+1
                 .......... (Y)      

Putting the values of Q, ∆P, ∆z and R in equation (Y)  

                                                          0.0070833 = [
1331.32

2×0.0271×0.05
]

1

n n×3.14×(0.015)
1
n
+3

3n+1
  

By apply trial and error method, we get- n = 0.88958 

Again apply equation (Y) and putting n = 0.88958 

                                             0.0070833 = [
∆P

2ηm∆z
]

1

n 0.88958×3.14×(0.015)
1

0.88958
+3

(3×0.88958)+1
  

                                                           ∆P = η
m
 (3190.330273)  

                                                                

                                             ∆P = (0.779156124H + 0.00129957 ) (98269.04)  
                                             ∆P = 2485.765369H + 4.146056004   

Table 2 : Mathematically modulated blood pressure drop v/s hematocrit 

Date 
Hematocrit (𝟑 × 𝑯𝑩)  

(kg/l) 

BPD (Blood Pressure drop)   

Pascal –second 

21/05/2016 0.033963 88.57009398 

09/07/2016 0.033397 87.16315078 

12/10/2016 0.0336793 87.86488235 

24/12/2016 0.0331133 86.45793915 

26/03/2017 0.03169812 82.94013371 
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12/05/2017 0.02830189 74.49790279 

17/08/2017 0.02886793 75.90494542 

 

Graph : (a, b) relation between real clinically blood pressure drop and hematocrit, mathematically modulated 

blood pressure drop v/s hematocrit 

 

  

 

 

 

 

 

 

 

 

 

Graph a (Table 1) relation between real clinically blood pressure drop and hematocrit.  𝐵𝑃𝐷 = (
𝑆+𝐷

2
− 𝑆), 

Where S = Systolic blood pressure and D = Diastolic blood pressure.  

Measuring the proportion of red blood cells in our blood can help to make a diagnosis or monitor our response 

to a treatment. A lower than normal hematocrit can indicate an insufficient supply of healthy red blood cells. 

Increasing blood viscosity via an increase in hematocrit reduces peripheral vascular resistance, lowering blood 

pressure and increasing perfusion via the increase in cardiac index. P value of less than 0.05 was considered 

statistically significant. The ratio of hematocrit to hemoglobin has been generally accepted to be 2.941 for 

long time and it is simplified to be 3.0 in the daily clinical practice. Hematocrit will always be three times the 

hemoglobin value, regardless patient's hydration status. 

ANOVA 

  df SS MS F Significance F 

Regression 1 205.789 205.7890306 
3.19953E+1

9 
3.27784E-48 

Residual 5 3.22E-17 6.43185E-18  

Total 6 205.789  

 Coefficients 
Standard 

Error 
t Stat P-value Lower 95% Upper 95% 

Intercept 4.14604473 1.4E-08 295430134.1 8.43393E-42 4.146044694 
4.14604476

7 

X Variable 1 2485.76537 4.39E-07 5656440092 3.27784E-48 2485.765369 
2485.76537

1 
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In above we have taken blood characteristic as a homogeneous non-Newtonian fluid. An alternative approach 

is to describe it as a complex fluid that consists of blood plasma and blood cells. Blood plasma can be 

considered as Newtonian fluid and described by the Navier-Stokes equations or by particle methods. Blood 

cells can also be modeled with partial differential equations of continuum mechanics or they can be considered 

as ensemble of particles with various forces acting between them. In both cases, the interaction of cells with 

the fluid and between them should be taken into account. 

Graph b (Table 2) relations between mathematically modulated blood pressure drop v/s hematocrit.   ∆P =
2485.765369H + 4.146056004 , Where ∆p  is denoted by Relation between blood pressure drop v/s 

hematocrit (trained line). The linear model is found for the given data.  

Observation 

Graph (a) shows that these 7 different dates were observed minimum about 1331.32 on dated 24/12/2016 and 

maximum value obtain 3328.3 on dated 12/5/2017. The value from 0.0380189 to 0.03169812 via 0.02886793 

of hematocrit value, the blood pressure drop down convex in decreases sence and the value from 0.02886793 

to 0.0331133 via 0.03169812 of hematocrit value, the blood pressure drop proper upper convex in decreasing 

sence. Again the value from 0.0331133 to 0.0336793 via 0.033397 of hematocrit value, the blood pressure 

drop straightly increasing sence and the value from 0.0336793 to 0.033963 of hematocrit value, the blood 

pressure drop decreasing sence. Graph (b) shows that these 7 different dates were observed minimum about 

74.49790279 on dated 12/5/2017 and maximum value obtains 88.57009398 on dated 21/5/2016 (BPD). At 

the value from 0.033963 to 0.02830189 via 0.033397, 0.0336793, 0.0331133, 0.03169812 & 0.02886793 of 

hematocrit value, the blood pressure drop straightly decreases on dated 21/5/2016 to 12/5/2017 via 9/7/2016, 

12/10/2016, 24/12/2016, 26/3/2017 & 17/8/2017.  

Result of Analysis 

From above clinical data (table 1) a mathematically investigated and concluded figure II; graph b (table. II) 

Shows from 21/5/2016 to 12/5/2017 via 9/7/2016, 12/10/2016, 24/12/2016 & 26/3/2017 decreasing sense 

whereas from 12/5/2017 to 17/8/2017 shows increasing sense. In the above graphs (a & b) we have observed 

“relation between real clinically blood pressure drop” and “relation between mathematically modulated blood 

pressure drop v/s hematocrit” graph are shows different nature but there trend line are not different. Trend 

lines of above graphs shows that if trend is upward it means fluctuation of blood (pressure drop) increases 

with respect to the hematocrit. Trend is downward that means fluctuation of blood pressure drop decreases 

with respect to the hematocrit. According to present study work concluded that designate the function of 
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hematocrit inside the will power of blood pressure drop. For this reason the hematocrit is extended then the 

blood pressure drop is likewise multiplied. 

Conclusion 

We are using numerical technique with analytical approach to find the value of parameter n and solution of 

equations and get continuous solutions. Similarly we can do work different disease in same tissue. If used 

numerical techniques with numerical approach and by using these techniques, we can get discrete numerical 

solutions in special points. With the help of these solutions we can more study of critical situations and better 

explain of these critical situations. The result will be improved with the help of numerical methods and further 

can be formulated. We can conclude that blood is generally a non-Newtonian fluid, which can however be 

regarded as a Newtonian fluid to model blood flow in arteries with diameters larger than 100 µm where 

measurements of the apparent viscosity show that it ranges from 0.003 to 0.004 P a.s and the typical Reynolds 

number is about 0.5. The behaviour of many fluids at low shear stress, including blood, has led researchers to 

believe in the existence of a critical value of stress below which the fluid will not flow. This critical stress 

level, called the yield value or yield, is typically treated as a constant material property of the fluid. 
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